Complete Moment Convergence for Negatively Dependent Sequences of Random Variables

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete Convergence for Negatively Dependent Sequences of Random Variables

for all x, y ∈ R. Moreover, it follows that 1.2 implies 1.1 , and hence, 1.1 and 1.2 are equivalent. Ebrahimi and Ghosh 1 showed that 1.1 and 1.2 are not equivalent for a collection of 3 or more random variables. They considered random variables X1, X2, and X3 where X1, X2, X3 assumed the values 0, 1, 1 , 1, 0, 1 , 1, 1, 0 , and 0, 0, 0 each with probability 1/4. The random variables X1, X2, an...

متن کامل

Complete convergence for negatively dependent random variables

Let {Xn, n ≥ 1} be a sequence of independent and identically random variables. In 1947 Hsu and Rabbins proved that if E[X] = 0 and E[X2] < ∞, then 1 n ∑n k=1Xk converges to 0 completely. Recently, the strong convergence of weighted sums for the case of independent random variables has been discussed by Wu (1999), Hu and et. (2000, 2003) proved the complete convergence theorem for arrays of inde...

متن کامل

Complete Convergence for Negatively Dependent Random Variables

Let {Xn, n ≥ 1} be a sequence of i.i.d., real random variables. Hsu and Rabbins [5] proved that if E(X) = 0 and E(X) < ∞, then the sequence 1 n ∑n i=1 Xi converges to 0 completely. (i.e., the series ∑∞ n=1 P [|Sn| > nε] < ∞, converges for every ε > 0). Now let {Xn, n ≥ 1} be a sequence of negatively dependent real random variables. In this paper, we proved the complete convergence of the sequen...

متن کامل

On the Complete Convergence ofWeighted Sums for Dependent Random Variables

We study the limiting behavior of weighted sums for negatively associated (NA) random variables. We extend results in Wu (1999) and a theorem in Chow and Lai (1973) for NA random variables.

متن کامل

Complete Moment Convergence and Mean Convergence for Arrays of Rowwise Extended Negatively Dependent Random Variables

The authors first present a Rosenthal inequality for sequence of extended negatively dependent (END) random variables. By means of the Rosenthal inequality, the authors obtain some complete moment convergence and mean convergence results for arrays of rowwise END random variables. The results in this paper extend and improve the corresponding theorems by Hu and Taylor (1997).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Dynamics in Nature and Society

سال: 2016

ISSN: 1026-0226,1607-887X

DOI: 10.1155/2016/9039345